Стандартный вид многочлена. Многочлены

После изучения одночленов переходим к многочленам. Данная статья расскажет о всех необходимых сведениях, необходимых для выполнения действий над ними. Мы определим многочлен с сопутствующими определениями члена многочлена, то есть свободный и подобный, рассмотрим многочлен стандартного вида, введем степень и научимся ее находить, поработаем с его коэффициентами.

Многочлен и его члены – определения и примеры

Определение многочлена было дано еще в 7 классе после изучения одночленов. Рассмотрим его полное определение.

Определение 1

Многочленом считается сумма одночленов, причем сам одночлен – это частный случай многочлена.

Из определения следует, что примеры многочленов могут быть различными: 5 , 0 , − 1 , x , 5 · a · b 3 , x 2 · 0 , 6 · x · (− 2) · y 12 , - 2 13 · x · y 2 · 3 2 3 · x · x 3 · y · z и так далее. Из определения имеем, что 1 + x , a 2 + b 2 и выражение x 2 - 2 · x · y + 2 5 · x 2 + y 2 + 5 , 2 · y · x являются многочленами.

Рассмотрим еще определения.

Определение 2

Членами многочлена называются его составляющие одночлены.

Рассмотрим такой пример, где имеем многочлен 3 · x 4 − 2 · x · y + 3 − y 3 , состоящий из 4 членов: 3 · x 4 , − 2 · x · y , 3 и − y 3 . Такой одночлен можно считать многочленом, который состоит из одного члена.

Определение 3

Многочлены, которые имеют в своем составе 2 , 3 трехчлена имеют соответственное название – двучлен и трехчлен .

Отсюда следует, что выражение вида x + y – является двучленом, а выражение 2 · x 3 · q − q · x · x + 7 · b – трехчленом.

По школьной программе работали с линейным двучленом вида a · x + b , где а и b являются некоторыми числами, а х – переменной. Рассмотрим примеры линейных двучленов вида: x + 1 , x · 7 , 2 − 4 с примерами квадратных трехчленов x 2 + 3 · x − 5 и 2 5 · x 2 - 3 x + 11 .

Для преобразования и решения необходимо находить и приводить подобные слагаемые. Например, многочлен вида 1 + 5 · x − 3 + y + 2 · x имеет подобные слагаемые 1 и - 3 , 5 х и 2 х. Их подразделяют в особую группу под названием подобных членов многочлена.

Определение 4

Подобные члены многочлена – это подобные слагаемые, находящиеся в многочлене.

В примере, приведенном выше, имеем, что 1 и - 3 , 5 х и 2 х являются подобными членами многочлена или подобными слагаемыми. Для того, что бы упростить выражение, применяют нахождение и приведение подобных слагаемых.

Многочлен стандартного вида

У всех одночленов и многочленов имеются свои определенные названия.

Определение 5

Многочленом стандартного вида называют многочлен, у которого каждый входящий в него член имеет одночлен стандартного вида и не содержит подобных членов.

Из определения видно, что возможно приведение многочленов стандартного вида, например, 3 · x 2 − x · y + 1 и __formula__, причем запись в стандартном виде. Выражения 5 + 3 · x 2 − x 2 + 2 · x · z и 5 + 3 · x 2 − x 2 + 2 · x · z многочленами стандартного вида не является, так как первый из них имеет подобные слагаемые в виде 3 · x 2 и − x 2 , а второй содержит одночлен вида x · y 3 · x · z 2 , отличающийся от стандартного многочлена.

Если того требуют обстоятельства, иногда многочлен приводится к стандартному виду. Многочленом стандартного вида считается и понятие свободного члена многочлена.

Определение 6

Свободным членом многочлена является многочлен стандартного вида, не имеющий буквенной части.

Иначе говоря, когда запись многочлена в стандартном виде имеет число, его называют свободным членом. Тогда число 5 является свободным членом многочлена x 2 · z + 5 , а многочлен 7 · a + 4 · a · b + b 3 свободного члена не имеет.

Степень многочлена – как ее найти?

Определение самой степени многочлена базируется на определении многочлена стандартного вида и на степенях одночленов, которые являются его составляющими.

Определение 7

Степенью многочлена стандартного вида называют наибольшую из степеней, входящих в его запись.

Рассмотрим на примере. Степень многочлена 5 · x 3 − 4 равняется 3 , потому как одночлены, входящие в его состав, имеют степени 3 и 0 , а большее из них 3 соответственно. Определение степени из многочлена 4 · x 2 · y 3 − 5 · x 4 · y + 6 · x равняется наибольшему из чисел, то есть 2 + 3 = 5 , 4 + 1 = 5 и 1 , значит 5 .

Следует выяснить, каким образом находится сама степень.

Определение 8

Степень многочлена произвольного числа - это степень соответствующего ему многочлена в стандартном виде.

Когда многочлен записан не в стандартном виде, но нужно найти его степень, необходимо приведение к стандартному, после чего находить искомую степень.

Пример 1

Найти степень многочлена 3 · a 12 − 2 · a · b · c · a · c · b + y 2 · z 2 − 2 · a 12 − a 12 .

Решение

Для начала представим многочлен в стандартном виде. Получим выражение вида:

3 · a 12 − 2 · a · b · c · a · c · b + y 2 · z 2 − 2 · a 12 − a 12 = = (3 · a 12 − 2 · a 12 − a 12) − 2 · (a · a) · (b · b) · (c · c) + y 2 · z 2 = = − 2 · a 2 · b 2 · c 2 + y 2 · z 2

При получении многочлена стандартного вида получаем, что отчетливо выделяются два из них − 2 · a 2 · b 2 · c 2 и y 2 · z 2 . Для нахождения степеней посчитаем и получим, что 2 + 2 + 2 = 6 и 2 + 2 = 4 . Видно, что наибольшая из них равняется 6 . Из определения следует, что именно 6 является степенью многочлена − 2 · a 2 · b 2 · c 2 + y 2 · z 2 , следовательно и исходного значения.

Ответ : 6 .

Коэффициенты членов многочлена

Определение 9

Когда все члены многочлена являются одночленами стандартного вида, то в таком случаем они имеют название коэффициентов членов многочлена. Иначе говоря, их можно называть коэффициентами многочлена.

При рассмотрении примера видно, что многочлен вида 2 · x − 0 , 5 · x · y + 3 · x + 7 имеет в своем составе 4 многочлена: 2 · x , − 0 , 5 · x · y , 3 · x и 7 с соответствующими их коэффициентами 2 , − 0 , 5 , 3 и 7 . Значит, 2 , − 0 , 5 , 3 и 7 считаются коэффициентами членов заданного многочлена вида 2 · x − 0 , 5 · x · y + 3 · x + 7 . При преобразовании важно обращать внимание на коэффициенты, стоящие перед переменными.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Пример. Упростите выражение 12ax²–y³–6ax²+3a²x–5ax²+2y³. Найдите одночлены с одинаковой буквенной частью. Сложите их. Запишите полученное выражение: ax²+3a²x+y³. Вы многочлен.

В , которые требуют разложения многочлена на множители, определите общий множитель данного выражения. Для этого сначала вынесите за скобки те переменные, которые входят в всех членов выражения. Причем эти переменные должны иметь наименьший показатель. Затем вычислите наибольший общий делитель каждого из коэффициентов многочлена. Модуль полученного числа будет коэффициентом общего множителя.

Пример. Разложите на 5m³–10m²n²+5m². Вынесите за скобки m², т.к. переменная m входит в каждый член данного выражения и ее наименьший показатель равен двум. Вычислите коэффициент общего множителя. Он равен пяти. Таким образом, общий множитель данного выражения равен 5m². Отсюда: 5m³–10m²n²+5m²=5m²(m–2n²+1).

Если выражение не имеет общего множителя, попробуйте разложить его способом группировки. Для этого объедините в группы те члены, у которых имеются общие множители. Вынесите общий множитель каждой группы за скобки. Вынесите за скобки общий множитель у всех образовавшихся групп.

Пример. Разложите на множители многочлен a³–3a²+4a–12. Произведите группировку следующим образом: (a³–3a²)+(4a–12). Вынесите за скобку общий множитель a² в первой группе и общий множитель 4 во второй группе. Отсюда: a²(a–3)+4(a–3). Вынесите за скобки многочлен a–3, получите: (a–3)(a²+4). Следовательно, a³–3a²+4a–12=(a–3)(a²+4).

Некоторые многочлены раскладываются на множители при помощи формул сокращенного умножения. Для этого приведите многочлен к нужному виду способом группировки или при помощи вынесения за скобки общего множителя. Далее примените соответствующую формулу сокращенного умножения.

Пример. Разложите на множители многочлен 4x²–m²+2mn–n². Объедините в скобки последние три члена, при этом вынесите за скобки –1. Получите: 4x²–(m²–2mn+n²). Выражение в скобках можно представить в виде квадрата разности. Отсюда: (2x)²–(m–n)². Это есть разность квадратов, значит, можно записать: (2x–m+n)(2x+m+n). Таким образом, 4x²–m²+2mn–n²=(2x–m+n)(2x+m+n).

Некоторые многочлены можно разложить на множители методом неопределенных коэффициентов. Так, каждый многочлен третьей степени можно представить в виде (y–t)(my²+ny+k), где t, m, n, k – числовые коэффициенты. Следовательно, задача сводится к определению значений этих коэффициентов. Это делается, исходя из данного равенства: (y–t)(my²+ny+k)=my³+(n–mt)y²+(k–nt)y–tk.

Пример. Разложите на множители многочлен 2a³–a²–7a+2. Из второй части формулы для многочлена третьей степени составьте равенства: m=2; n–mt=–1; k–nt=–7; –tk=2. Запишите их в виде системы уравнений. Решите ее. Вы найдете значения t=2; n=3; k=–1. Подставьте вычисленные коэффициенты в первую часть формулы, получите: 2a³–a²–7a+2=(a–2)(2a²+3a–1).

Многочленом называют сумму одночленов. Если все члены многочлена записать в стандартном виде (см. п. 51) и выполнить приведение подобных членов, то получится многочлен стандартного вида.

Всякое целое выражение можно преобразовать в многочлен стандартного вида - в этом состоит цель преобразований (упрощений) целых выражений.

Рассмотрим примеры, в которых целое выражение нужно привести к стандартному виду многочлена.

Решение. Сначала приведем к стандартному виду члены многочлена. Получим После приведения подобных членов получим многочлен стандартного вида

Решение. Если перед скобками стоит знак «плюс, то скобки можно опустить, сохранив знаки всех слагаемых, заключенных в скобки. Воспользовавшись этим правилом раскрытия скобок, получим:

Решение. Если перед скобками стоит зиак «минус», то скобки можно опустить, изменив знаки всех слагаемых» заключенных в скобки. Воспользовавшись этим правилом паскрытия скобок, получим:

Решение. Произведение одночлена и многочлена согласно распределительному закону равно сумме произведений этого одночлена и каждого члена многочлена. Получаем

Решение. Имеем

Решение. Имеем

Осталось привести подобные члены (они подчеркнуты). Получим:

53. Формулы сокращенного умножения.

В некоторых случаях приведение целого выражения к стандартному виду многочлена осуществляется с использованием тождеств:

Эти тождества называют формулами сокращенного умножения,

Рассмотрим примеры, в которых нужно преобразовать заданное выражение в миогочлеи стандартного вида.

Пример 1. .

Решение. Воспользовавшись формулой (1), получим:

Пример 2. .

Решение.

Пример 3. .

Решение. Воспользовавшись формулой (3), получим:

Пример 4.

Решение. Воспользовавшись формулой (4), получим:

54. Разложение многочленов на множители.

Иногда можно преобразовать многочлен в произведение нескольких сомножителей - многочленов или одпочленов. Такое тождественное преобразование называется разложением многочлена на множители. В этом случае говорят, что многочлен делится на каждый из этих множителей.

Рассмотрим некоторые способы разложения многочленов на множители,

1) Вынесение общего множителя за скобку. Это преобразование является непосредственным следствием распределительного закона (для наглядности нужно лишь переписать этот закон «справа налево»):

Пример 1. Разложить на множители многочлен

Решение. .

Обычно при вынесении общего множителя за скобки каждую переменную, входящую во все члены многочлена, выносят с наименьшим показателем, который она имеет в данном многочлене. Если все коэффициенты многочлена - целые числа, то в качестве коэффициента общего множителя берут наибольший по модулю общий делитель всех коэффициентов многочлена.

2) Использование формул сокращенного умножения. Формулы (1) - (7) из п. 53, будучи прочитанными «справа налево, во многих случаях оказываются полезными для разложения многочленов на множители.

Пример 2. Разложить на множители .

Решение. Имеем . Применив формулу (1) (разность квадратов), получим . Применив

теперь формулы (4) и (5) (сумма кубов, разность кубов), получим:

Пример 3. .

Решение. Сначала вынесем за скобку общий множитель. Для этого найдем наибольший общий делитель коэффициентов 4, 16, 16 и наименьшие показатели степеней, с которыми переменные а и b входят в составляющие данный многочлен одночлены. Получим:

3) Способ группировки. Он основан на том, что переместительный и сочетательный законы сложения позволяют группировать члены многочлена различными способами. Иногда удается такая группировка, что после вынесения за скобки общих множителей в каждой группе в скобках остается однн и тот же многочлен, который в свою очередь как общий множитель может быть вынесен за скобки. Рассмотрим примеры разложения многочлена на множители.

Пример 4. .

Решение. Произведем группировку следующим образом:

В первой группе вынесем за скобку общий множитель во второй - общий множитель 5. Получим Теперь многочлен как общий множитель вынесем за скобку: Таким образом, получаем:

Пример 5.

Решение. .

Пример 6.

Решение. Здесь никакая группировка не приведет к появлению во всех группах одного и того же многочлена. В таких случаях иногда оказывается полезным представить какой-либо член многочлена в виде некоторой суммы, после чего снова попробовать применить способ группировки. В нашем примере целесообразно представить в виде суммы Получим

Пример 7.

Решение. Прибавим и отнимем одночлен Получим

55. Многочлены от одной переменной.

Многочлен , где a, b - числа переменная, называется многочленом первой степени; многочлен где а, b, с - числа переменная, называется многочленом второй степени или квадратным трехчленом; многочлен где а, b, с, d - числа переменная называется многочленом третьей степени.

Вообще если о, переменная, то многочлен

называется лсмогочленол степени (относительно х); , m-члены многочлена, коэффициенты, старший член многочлена, а - коэффициент при старшем члене, свободный член многочлена. Обычно многочлен записывают по убывающим степеням переменной, т. е. степени переменной постепенно уменьшаются, в частности, на первом месте стоит старший член, на последнем - свободный член. Степень многочлена - это степень старшего члена.

Например, многочлен пятой степени, в котором старший член, 1 - свободный член многочлена.

Корнем многочлена называют такое значение при котором многочлен обращается в нуль. Например, число 2 является корнем многочлена так как

В изучении темы о многочленах отдельно стоит упомянуть о том, что многочлены встречаются как стандартного, так и не стандартного вида. При этом многочлен нестандартного вида можно привести к стандартному виду. Собственно, этот вопрос и будем разбирать в данной статье. Закрепим разъяснения примерами с подробным пошаговым описанием.

Смысл приведения многочлена к стандартному виду

Немного углубимся в само понятие, действие – «приведение многочлена к стандартному виду».

Многочлены, подобно любым другим выражениям, возможно тождественно преобразовывать. Как итог, мы получаем в таком случае выражения, которые тождественно равны исходному выражению.

Определение 1

Привести многочлен к стандартному виду – означает замену исходного многочлена на равный ему многочлен стандартного вида, полученный из исходного многочлена при помощи тождественных преобразований.

Способ приведения многочлена к стандартному виду

Порассуждаем на тему того, какие именно тождественные преобразования приведут многочлен к стандартному виду.

Определение 2

Согласно определению, каждый многочлен стандартного вида состоит из одночленов стандартного вида и не имеет в своем составе подобных членов. Многочлен же нестандартного вида может включать в себя одночлены нестандартного вида и подобные члены. Из сказанного закономерно выводится правило, говорящее о том, как привести многочлен к стандартному виду:

  • в первую очередь к стандартному виду приводятся одночлены, составляющие заданный многочлен;
  • затем производится приведение подобных членов.

Примеры и решения

Разберем подробно примеры, в которых приведем многочлен к стандартному виду. Следовать будем правилу, выведенному выше.

Отметим, что иногда члены многочлена в исходном состоянии уже имеют стандартный вид, и остается только привести подобные члены. Случается, что после первого шага действий не оказывается подобных членов, тогда второй шаг пропускаем. В общих случаях необходимо совершать оба действия из правила выше.

Пример 1

Заданы многочлены:

5 · x 2 · y + 2 · y 3 − x · y + 1 ,

0 , 8 + 2 · a 3 · 0 , 6 − b · a · b 4 · b 5 ,

2 3 7 · x 2 + 1 2 · y · x · (- 2) - 1 6 7 · x · x + 9 - 4 7 · x 2 - 8 .

Необходимо привести их к стандартному виду.

Решение

рассмотрим сначала многочлен 5 · x 2 · y + 2 · y 3 − x · y + 1 : его члены имеют стандартный вид, подобные члены отсутствуют, значит многочлен задан в стандартном виде, и никаких дополнительных действий не требуется.

Теперь разберем многочлен 0 , 8 + 2 · a 3 · 0 , 6 − b · a · b 4 · b 5 . В его состав входят нестандартные одночлены: 2 · a 3 · 0 , 6 и − b · a · b 4 · b 5 , т.е. имеем необходимость привести многочлен к стандартному виду, для чего первым действием преобразуем одночлены в стандартный вид:

2 · a 3 · 0 , 6 = 1 , 2 · a 3 ;

− b · a · b 4 · b 5 = − a · b 1 + 4 + 5 = − a · b 10 , таким образом получаем следующий многочлен:

0 , 8 + 2 · a 3 · 0 , 6 − b · a · b 4 · b 5 = 0 , 8 + 1 , 2 · a 3 − a · b 10 .

В полученном многочлене все члены – стандартные, подобных членов не имеется, значит наши действия по приведению многочлена к стандартному виду завершены.

Рассмотрим третий заданный многочлен: 2 3 7 · x 2 + 1 2 · y · x · (- 2) - 1 6 7 · x · x + 9 - 4 7 · x 2 - 8

Приведем его члены к стандартному виду и получим:

2 3 7 · x 2 - x · y - 1 6 7 · x 2 + 9 - 4 7 · x 2 - 8 .

Мы видим, что в составе многочлена имеются подобные члены, произведем приведение подобных членов:

2 3 7 · x 2 - x · y - 1 6 7 · x 2 + 9 - 4 7 · x 2 - 8 = = 2 3 7 · x 2 - 1 6 7 · x 2 - 4 7 · x 2 - x · y + (9 - 8) = = x 2 · 2 3 7 - 1 6 7 - 4 7 - x · y + 1 = = x 2 · 17 7 - 13 7 - 4 7 - x · y + 1 = = x 2 · 0 - x · y + 1 = x · y + 1

Таким образом, заданный многочлен 2 3 7 · x 2 + 1 2 · y · x · (- 2) - 1 6 7 · x · x + 9 - 4 7 · x 2 - 8 принял стандартный вид − x · y + 1 .

Ответ:

5 · x 2 · y + 2 · y 3 − x · y + 1 - многочлен задан стандартным;

0 , 8 + 2 · a 3 · 0 , 6 − b · a · b 4 · b 5 = 0 , 8 + 1 , 2 · a 3 − a · b 10 ;

2 3 7 · x 2 + 1 2 · y · x · (- 2) - 1 6 7 · x · x + 9 - 4 7 · x 2 - 8 = - x · y + 1 .

Во многих задачах действие приведения многочлена к стандартному виду – промежуточное при поиске ответа на заданный вопрос. Рассмотрим и такой пример.

Пример 2

Задан многочлен 11 - 2 3 z 2 · z + 1 3 · z 5 · 3 - 0 . 5 · z 2 + z 3 . Необходимо привести его к с стандартному виду, указать его степень и расположить члены заданного многочлена по убывающим степеням переменной.

Решение

Приведем члены заданного многочлена к стандартному виду:

11 - 2 3 z 3 + z 5 - 0 . 5 · z 2 + z 3 .

Следующим шагом приведем подобные члены:

11 - 2 3 z 3 + z 5 - 0 . 5 · z 2 + z 3 = 11 + - 2 3 · z 3 + z 3 + z 5 - 0 , 5 · z 2 = = 11 + 1 3 · z 3 + z 5 - 0 , 5 · z 2

Мы получили многочлен стандартного вида, что дает нам возможность обозначить степень многочлена (равна наибольшей степени составляющих его одночленов). Очевидно, что искомая степень равна 5 .

Остается только расположить члены по убывающим степеням переменных. С этой целью мы просто переставим местами члены в полученном многочлене стандартного вида с учетом требования. Таким образом, получим:

z 5 + 1 3 · z 3 - 0 , 5 · z 2 + 11 .

Ответ:

11 - 2 3 · z 2 · z + 1 3 · z 5 · 3 - 0 , 5 · z 2 + z 3 = 11 + 1 3 · z 3 + z 5 - 0 , 5 · z 2 , при этом степень многочлена – 5 ; в результате расположения членов многочлена по убывающим степеням переменных многочлен примет вид: z 5 + 1 3 · z 3 - 0 , 5 · z 2 + 11 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

На данном уроке мы вспомним основные определения данной темы и рассмотрим некоторые типовые задачи, а именно приведение многочлена к стандартному виду и вычисление численного значения при заданных значениях переменных. Мы решим несколько примеров, в которых будет применяться приведение к стандартному виду для решения разного рода задач.

Тема: Многочлены. Арифметические операции над одночленами

Урок: Приведение многочлена к стандартному виду. Типовые задачи

Напомним основное определение: многочлен - это сумма одночленов. Каждый одночлен, входящий в состав многочлена как слагаемое называется его членом. Например:

Двучлен;

Многочлен;

Двучлен;

Поскольку многочлен состоит из одночленов, то первое действие с многочленом следует отсюда - нужно привести все одночлены к стандартному виду. Напомним, что для этого нужно перемножить все численные множители - получить численный коэффициент, и перемножить соответствующие степени - получить буквенную часть. Кроме того, обратим внимание на теорему о произведении степеней: при умножении степеней показатели их складываются.

Рассмотрим важную операцию - приведение многочлена к стандартному виду. Пример:

Комментарий: чтобы привести многочлен к стандартному виду, нужно привести к стандартному виду все одночлены, входящие в его состав, после этого, если есть подобные одночлены - а это одночлены с одинаковой буквенной частью - выполнить действия с ними.

Итак, мы рассмотрели первую типовую задачу - приведение многочлена к стандартному виду.

Следующая типовая задача - вычисление конкретного значения многочлена при заданных численных значениях входящих в него переменных. Продолжим рассматривать предыдущий пример и зададим значения переменных:

Комментарий: напомним, что единица в любой натуральной степени равна единице, а ноль в любой натуральной степени равен нулю, кроме того, напомним, что при умножении любого числа на ноль получаем ноль.

Рассмотрим ряд примеров на типовые операции приведения многочлена к стандартному виду и вычисление его значения:

Пример 1 - привести к стандартному виду:

Комментарий: первое действие - приводим одночлены к стандартному виду, нужно привести первый, второй и шестой; второе действие - приводим подобные члены, то есть выполняем над ними заданные арифметические действия: первый складываем с пятым, второй с третьим, остальные переписываем без изменений, так как у них нет подобных.

Пример 2 - вычислить значение многочлена из примера 1 при заданных значениях переменных:

Комментарий: при вычислении следует вспомнить, что единица в любой натуральной степени это единица, при затруднении вычислений степеней двойки можно воспользоваться таблицей степеней.

Пример 3 - вместо звездочки поставить такой одночлен, чтобы результат не содержал переменной :

Комментарий: независимо от поставленной задачи, первое действие всегда одинаково - привести многочлен к стандартному виду. В нашем примере это действие сводится к приведению подобных членов. После этого следует еще раз внимательно прочитать условие и подумать, каким образом мы можем избавиться от одночлена . очевидно, что для этого нужно к нему прибавить такой же одночлен, но с противоположным знаком - . далее заменяем звездочку этим одночленом и убеждаемся в правильности нашего решения.